Browser extension sample – Chrome/Edge – HttpRequestViewer

Browser Extensions

The Evolution of Browser Extensions: From Web Customization to Advanced Development Tools – Part 2
We discussed about The evolution of the Browser extensions in the previous post. Lets quick learn how to create a Chrome/Edge/Firefox extension. I have mentioned “Advanced development tools” in the title, but never got chance to explore those capabilities earlier. We will create a simple extension to explore the power of it.

Creating a browser extension has never been easier, thanks to the comprehensive documentation and support provided by browser vendors. Below, we’ll walk through the steps to create a simple extension for both Chrome and Microsoft Edge using Manifest V3. We will use this tool to print the list of HTTP requests that are fired in a given browser and list it in the page.

Basics of extensions:

Manifests – A manifest is a JSON file that contains metadata about a browser extension, such as its name, version, permissions, and the files it uses. It serves as the blueprint for the extension, informing the browser about the extension’s capabilities and how it should be loaded.

Key Components of a Manifest File:

Here are the key components typically found in a Manifest V3 file:

1. Manifest Version: There are different versions of the manifest file, with Manifest V3 being the latest and most widely adopted version. Manifest V3 introduces several changes aimed at improving security, privacy, and performance with lot of controversies around it. Read more about the controversies at Ghostery.
2. Name and Version: These fields define the name and version of the extension. Choose a unique name and version. An excellent guide of version semantics is available here.
3. Description: A short description of the extension’s functionality.
4. Action: Defines the default popup and icon for the browser action (e.g., toolbar button).
5. Background: Specifies the background script that runs in the background and can handle events like network requests and alarms.
6. Content Scripts: Defines scripts and stylesheets to be injected into matching web pages.
7. Permissions: Lists the permissions the extension needs to operate, such as access to tabs, storage, and specific websites.
8. Icons: Specifies the icons for the extension in different sizes. For this post I created a simple icon using Microsoft Designer. I gave a simple prompt with the description above and I got the below image. Extension requires different sizes for showing it in different places. I used Chrome Extension Icon Generator and generated different sizes as needed.

     

9. Web Accessible Resources: Defines which resources can be accessed by web pages.

Create a project structure as follows:

HttpRequestViewer/
|-- manifest.json
|-- popup.html
|-- popup.js
|-- background.js
|-- history.html
|-- history.js
|-- popup.css
|-- styles.css
|-- icons/
    |-- icon.png
    |-- icon16.png
    |-- icon32.png
    |-- icon48.png
    |-- icon128.png

Manifest.json

{
  "name": "API Request Recorder",
  "description": "Extension to record all the HTTP request from a webpage.",
  "version": "0.0.1",
  "manifest_version": 3,
  "host_permissions": [""],
  "permissions": ["activeTab", "webRequest", "storage"],
  "action": {
    "default_popup": "popup.html",
    "default_icon": "icons/icon.png"
  },
  "background": {
    "service_worker": "background.js"
  },
  "icons": {
    "16": "icons/icon16.png",
    "32": "icons/icon32.png",
    "48": "icons/icon48.png",
    "128": "icons/icon128.png"
  },
  "content_security_policy": {
    "extension_pages": "script-src 'self'; object-src 'self';"
  },
  "web_accessible_resources": [{ "resources": ["images/*.png"], "matches": ["https://*/*"] }]
}

popup.html
We have two options with the extension.

1. A button with record option to start recording all the HTTP requests
2. Link to view the history of HTTP Requests recorded

<!DOCTYPE html>
<html>
  <head>
    <title>API Request Recorder</title>

    <link rel="stylesheet" href="popup.css" />
  </head>
  <body>
    <div class="heading">
      <img class="logo" src="icons/icon48.png" />
      <h1>API Request Recorder</h1>
    </div>
    <button id="startStopRecord">Record</button>

    <div class="button-group">
      <a href="#" id="history">View Requests</a>
    </div>

    <script src="popup.js"></script>
  </body>
</html>

popup.js
Two event listeners are registered for recording (with start / stop) and viewing history.
First event is used to send a message to the background.js, while the second one instructs chrome to open the history page in new tab.

document.getElementById("startStopRecord").addEventListener("click", () => {
  chrome.runtime.sendMessage({ action: "startStopRecord" });
});

document.getElementById("history").addEventListener("click", () => {
  chrome.tabs.create({ url: chrome.runtime.getURL("/history.html") });
});

history.html

 
<!DOCTYPE html>
<html>
  <head>
    <title>History</title>
    <link rel="stylesheet" href="styles.css" />
  </head>
  <body>
    <h1>History Page</h1>
    <table>
      <thead>
        <tr>
		  <th>Method</th>
          <th>URL</th>
          <th>Body</th>
        </tr>
      </thead>
      <tbody id="recorded-data-body">
        <!-- Data will be populated here -->
      </tbody>
    </table>
    <script src="history.js"></script>
  </body>
</html>

history.js
Requests background.js to “getRecordedData” and renders the result in the html format.

document.addEventListener("DOMContentLoaded", () => {
  chrome.runtime.sendMessage({ action: "getRecordedData" }, (response) => {
    const tableBody = document.getElementById("recorded-data-body");
    response.forEach((record) => {
      const row = document.createElement("tr");
      const urlCell = document.createElement("td");
      const methodCell = document.createElement("td");
      const bodyCell = document.createElement("td");

      urlCell.textContent = record.url;
      methodCell.textContent = record.method;
      bodyCell.textContent = record.body;

      row.appendChild(methodCell);
      row.appendChild(urlCell);
      row.appendChild(bodyCell);
      tableBody.appendChild(row);
    });
  });
});

background.js
Background JS works as a service worker for this extension, listening and handling events.
The background script does not have access to directly manipulate the user page content, but can post results back for the popup/history script to handle the cosmetic changes.

let isRecording = false;
let recordedDataList = [];

chrome.runtime.onMessage.addListener((message, sender, sendResponse) => {
  console.log("Obtined message: ", message);
  if (message.action === "startStopRecord") {
    if (isRecording) {
      isRecording = false;
      console.log("Recording stopped...");
      sendResponse({ recorder: { status: "stopped" } });
    } else {
      isRecording = true;
      console.log("Recording started...");
      sendResponse({ recorder: { status: "started" } });
    }
  } else if (message.action === "getRecordedData") {
    sendResponse(recordedDataList);
  } else {
    console.log("Unhandled action ...");
  }
});

chrome.webRequest.onBeforeRequest.addListener(
  (details) => {
    if (isRecording) {
      let requestBody = "";
      if (details.requestBody) {
        if (details.requestBody.formData) {
          requestBody = JSON.stringify(details.requestBody.formData);
        } else if (details.requestBody.raw) {
          requestBody = new TextDecoder().decode(new Uint8Array(details.requestBody.raw[0].bytes));
        }
      }
      recordedDataList.push({
        url: details.url,
        method: details.method,
        body: requestBody,
      });
      console.log("Recorded Request:", {
        url: details.url,
        method: details.method,
        body: requestBody,
      });
    }
  },
  { urls: [""] },
  ["requestBody"]
);

Lets load the Extension

All set, now lets load the extension and test it.

  • Open Chrome/Edge and go to chrome://extensions/ or edge://extensions/ based on your browser.
  • Enable “Developer mode” using the toggle in the top right corner.
  • Click “Load unpacked” and select the directory of your extension.

Load extensionupload extension

  • Your extension should now be loaded, and you can interact with it using the popup.
  • When you click the “Record” button, it will start logging API requests to the console.

  • Click the “Record” button again and hit the “View requests” link in the popup to view the history of APIs.

I have a sample page (https://itechgenie.com/demos/apitesting/index.html) with 4 API calls, which also loads images based on the API responses. You could see all the API requests that is fired from the page including the JS, CSS, Images and API calls.


Now its up to the developers imagination to build the extension to handle these APIs request and response data and give different experience.

Code is available in GitHub at HttpRequestViewer

The Evolution of Browser Extensions: From Web Customization to Advanced Development Tools

Browser Extensions

It’s been a while that I published a post. A week before, I created a new Chrome extension and shared with my team and noticed the new developers didn’t have knowledge on how powerful the browser extensions can be. It pushed me to write a short post about the history and power of browser extensions.

A Brief History

Browser extensions have dramatically transformed how users interact with the internet, offering a plethora of customization options and functionalities that enhance productivity, security, streamline workflows and user experience. These small software modules, integrated into web browsers like Chrome, Edge, Firefox etc., enable users and developers to tailor their browsing experience, automate tasks, and access additional features not available in standard browser installations. The evolution of browser extensions has marked a significant milestone in web development, fostering a community of developers who continuously innovate and simplify complex tasks.

The Early Days

Browser extensions trace their origins back to the early days of web browsers. The first notable implementation was by Internet Explorer in the late 1990s, which allowed for basic plugins to extend browser capabilities. Early days of these extensions allowed developers to add custom menu bars(also known as Browser Bands and Communication Bands), context menu options for seamless integration with extensions. CricInfo cricket score ticker was a popular toolbar that I have used in the early days. Internet download manager extension is one another toolbar which allowed the download of audios and videos, changed the life of lot of Dial-up connection users.

The Rise of Firefox

However, it was Mozilla Firefox that popularized the concept of extensions by providing a dedicated platform for the developers to create and submit the add-ons. Themes and skins are a fun part of extensions world. Greasemonkey,one of the early add-ons, allowed users to write custom code on top of extensions was a boon for customization. I used my first AdBlocker script from UserScripts.org installed using Greasemonkey. This Add-on allowed me to create customize my own scripts without taking the hassle of publishing. Firefox’s various components like Add-ons, Extensions, and Plugins (Flash, Java, SilverLight, etc.) eventually evolved into standardized extensions.

The Chrome Era

Then came the days of Chrome. Google Chrome, introduced in 2008, revolutionized the extension landscape by offering streamlined APIs and a dedicated web store for its extensions. This facilitated easier development and distribution of extensions, leading to a surge in their popularity. The Chrome Web Store, launched in 2010, became a central hub for users to discover and install extensions, further solidifying their importance in the web ecosystem.

Extensions like Web Developer and React Developer Tools provide essential utilities for debugging, testing, and optimizing web applications. By leveraging browser APIs, developers can create tools that integrate seamlessly into their development environment, automating repetitive tasks and offering real-time insights into application performance.

Essential Extensions for Users

Some of the most used extensions include:
AdBlock / AdBlock Plus / uBlock Origin: Blocks ads on websites, improving load times and reducing clutter.
Microsoft Editor / Grammarly: Enhances writing by checking grammar, spelling, and style.
Honey: Automatically finds and applies coupon codes at checkout.
Bitwarden / LastPass: A password manager that stores and auto-fills passwords securely.
Momentum: Replaces the new tab page with a personal dashboard featuring a to-do list, weather, and inspirational quotes.
Dark Reader: Applies a dark theme to websites, reducing eye strain.

Must-Have Extensions for Developers

From a developer’s perspective, extensions are a boon. Some popular developer-friendly extensions are:
TamperMonkey – Modify website layouts, add/remove features, or automate actions – Alternative to Greasemonkey supporting userscripts.
React Developer Tools / Vue.js / – Provides debugging and inspection tools for React and Vue.js applications.
Redux DevTools – Allows developers to inspect every state and action payload for Redux applications.
Postman – A powerful tool for testing APIs by making HTTP requests.
JSON Viewer – Formats JSON data to make it more readable.
XPath Helper – Helps to find XPath expressions for elements on a webpage.
ColorZilla – Advanced color picker and gradient generator.
WhatFont – Identifies fonts used on a webpage.

We will see how to create a simple browser extension in the next post –Browser extension sample – Chrome/Edge – HttpRequestViewer

Best operating system to run older configuration PC – Lubuntu

Choosing Lubuntu:

LatelyI was pushed to use my 7 year old PC for an emergency which had Windows 7 in it. It was very tough for me to use the old PC as compared to my latest one, even though it had 1.5GB or RAM and Dual Core Processor. I even had thoughts to install Windows XP to achive better performance.

Before starting anything, did some research to if I can find a Linux distro that could consume very less resources. I was always fond of the Ubuntu distros for as long as 10 years.
I was very fond of receiving the Ubuntu distro CDs that was transported freely to my remote village earlier in 2004 or 2005.
With that fondness I searched the latest distro and then came the Lubuntu (Lite-Ubuntu). I installed it in my PC with dual boot configuration. I should say that the performance is very impressive.

About Lubuntu:

Lubuntu is a good operating system for many old computers, but not for all of them.
Some computers have too little horsepower or memory. A rule of thumb is that the computer should not be more than 10 years old.
Lubuntu is recognized as a member the Ubuntu family by the developers of Ubuntu and has the same release nomenclature.

System Requirements, as per Lubuntu site:

We have done many tests and we've found out that Lubuntu can be installed on a Pentium II or Celeron system with 128 MB of RAM, but such a system would not perform well enough for daily use.
With 256MB - 384MB of RAM, the performance will be better and the system will be more usable.
With 512MB of RAM, you don't need to worry much.

If you like to use the system for normal activities like general browsing, viewing mails etc., the above config would be great.
But if you intend to use it for video watching like using Youtube, I must warn you, the browser you use could eat up all all memory.

Differences between Lubuntu and Ubuntu:

1. Different Desktop Environment (DE) – Lubuntu uses LXDE (Lightweight X11 Desktop Environment) while Ubuntu uses Unity as the default DE.

  • Both Lubuntu and Ubuntu share two major important things: same Core System and same Repositories.
  • Lubuntu and Ubuntu belong to the same family and talking about each as totally different two systems is not correct since they have some things in common.
  • They even share the same Forum Area and share many Wiki Pages. Other than that, they are the same.
  • The DE is what makes Lubuntu a lightweight OS, and of course the selected applications too because we make sure to use the lightest applications which are not resource hungry.
  • However, you are still free to use any application available in Ubuntu’s repositories, as long as your computer can run it.

2. Different Default Applications

Lubuntu Application Function
Xpad Stickies
Evince PDF Viewer
Gnumeric Spreadsheet
Abiword Docs
Simple-scan Scanner
Gnome-disk-utility Partition Editor
Light-locker Screensaver
Guvcview Webcam Utility
Gucharmap Character Map
Scrot Screenshot
Hardinfo System info
Mtpaint Image Editing
Xfburn Cd Burning
Pcmanfm File Manager
Gcalculator Calculator
Audacious Audio Player
Gnome-mplayer Video Player
Transmission Torrent
Pidgin Instant Messaging
Sylpheed Email Client
Mozilla Firefox Web browser
Leafpad Editor
File-roller (De)Compress files
Lxterminal Terminal
Gpicview Image Viewer

Download Lubuntu:

http://lubuntu.me/downloads/
https://help.ubuntu.com/community/Lubuntu/GetLubuntu

Official Websites:

http://lubuntu.me/
http://lubuntu.net/
https://wiki.ubuntu.com/Lubuntu

Installing Oracle JDK in Amazon AWS EC2 Ubuntu

Lately I tried to install Oracle JDK in one of my Ubuntu servers on Amazon EC2 instance. Unfortunately the inbuilt installers support the installation of OpenJDK.

For some requirements, I was in need of installing a specific version of JDK and test my application, you could get the older version from Oracle Site. I used the following script from one of the blogs, hope it helps someone.

#!/usr/bin/env bash
wget -O 'jdk-7u80-linux-x64.tar.gz' --no-cookies --no-check-certificate --header 'Cookie:gpw_e24=http://www.oracle.com; oraclelicense=accept-securebackup-cookie' 'http://download.oracle.com/otn-pub/java/jdk/7u80-b15/jdk-7u80-linux-x64.tar.gz'
tar -xvf jdk-7u80-linux-x64.tar.gz
sudo mkdir /usr/lib/jvm
sudo mv ./jdk1.7* /usr/lib/jvm/jdk1.7.0
sudo update-alternatives --install "/usr/bin/java" "java" "/usr/lib/jvm/jdk1.7.0/bin/java" 1
sudo update-alternatives --install "/usr/bin/javac" "javac" "/usr/lib/jvm/jdk1.7.0/bin/javac" 1
sudo update-alternatives --install "/usr/bin/javaws" "javaws" "/usr/lib/jvm/jdk1.7.0/bin/javaws" 1
sudo chmod a+x /usr/bin/java
sudo chmod a+x /usr/bin/javac
sudo chmod a+x /usr/bin/javaws

The Key here is Oracle need you to accept the license terms before using the any version of Oracle JDK. You could do the same from the scripting by just adding --no-cookies --no-check-certificate --header 'Cookie:gpw_e24=http://www.oracle.com; oraclelicense=accept-securebackup-cookie' params to the WGET.

Alternative, you could download the installers/zip files from external CDNs, like REUCON, move it to EC2 instance through SFTP and install it.

Adding Oracle Datasource to JBoss EAP server

To add a Oracle Datasource to the JBOSS server, follow the steps

1. In the standalone.xml or in standalone-full.xml

<subsystem xmlns="urn:jboss:domain:datasources:1.2">
		<datasources>
			<datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS" enabled="true" use-java-context="true">
				<connection-url>jdbc:h2:tcp://localhost/~/jbpm-db-new;MVCC=TRUE;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE</connection-url>
				<driver>h2</driver>
				<security>
					<user-name>sa</user-name>
					<password>sa</password>
				</security>
			</datasource>
			<datasource jndi-name="java:jboss/datasources/JbpmDS" pool-name="JbpmDS" enabled="true" use-java-context="true">
				<connection-url>jdbc:oracle:thin:@localhost:1521:XE</connection-url>
				<driver>oracle</driver>
				<security>
					<user-name>username</user-name>
					<password>password</password>
				</security>
			</datasource>
			<drivers>
				<driver name="h2" module="com.h2database.h2">
					<xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>
				</driver>
				<driver name="oracle" module="com.oracle.jdbc">
					<driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
					<xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-datasource-class>
				</driver>
			</drivers>
		</datasources>
</subsystem>

2. In $JBOSS_HOME/modules/com/oracle/jdbc/main I have copied the ojdbc6.jar and created the module.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.oracle.jdbc">
  <resources>
    <resource-root path="ojdbc6.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

3. Now you could use the JNDI “java:jboss/datasources/JbpmDS” in your application

Must have Android apps for developers (Non Android developers)

The below list of apps are note rated or ordered in any ways.

1. AndroIRC – An IRC client application
2. Chrome – Mobile browser
3. Mozilla Firefox – Mobile browser
4. SSH/SFTP Server – Exposing your mobile as a SSH/SFTP server
5. AndFTP – FTP client
6. JuiceSSH – SSH client
7. aLogcat/aLogrec – Logger apps to view or save Android logs
8. Network Info II – Shows info about the phone and the current network, Bluetooth, IPv6 and Cell connection
9. kWS – Android Web Server
10. Google Analytics – Mobile client for Google Analytics
11. WordPress – Mobile client for WordPress dashboard
12. Control Panel for cPanel – Mobile client for cPanel Dashboard
13. File Expert – All in one File manager supporting Windows Samba, FTP, SFTP, FTPS, Webdev, Bluetooth OBEX client

Note: The above app list is used by me and has nothing to do with the other users.

Famous Short URL services

URL shortening is a technique used to make the URLs substantially shorter in length and still direct to the required page. This is achieved by using an HTTP Redirect on a domain name that is very short in length, which links to the web page that has a long URL.

URL shortening is also used for beautify a link, track the url activity, in some cases to used to disguise the underlying address for legitimate purposes.

Some of the famous URL shortening services are follows:

1. Adf.ly
2. Bit.ly
3. Goo.gl
4. Is.gd
5. Tinyurl.com
6. V.gd

Bhuvan, The Earth browser – A Geoportal of Indian Space Research Organisation

Most of us would have used the mapping services like Google Maps, Nokia Maps, Bing maps, Wiki Mapia etc on the net. But how many of us knew that we in India have a dedicated Mapping system. Yes, all those PSLV family satellites, Remote sensing satellites from ISRO send us a lot of images; details etc daily and these details are available to the public’s view.

Bhuvan is a Geo-portal of Indian Space Research Organization Showcasing Indian Imaging Capabilities in Multi-sensor, Multi-platform and Multi-temporal domain. This Earth browser gives a gateway to explore and discover virtual earth in 3D space with specific emphasis on Indian Region. The other services provided by the Bhuvan are Land services, Ground water prospects, Weather services, Ocean services, Disaster services

The Mapping system provides both the 2D and 3D viewing capability and can see information that is otherwise dry and academic, in ways that are visually fascinating. It helps you capture large databases of satellite data, which can be transformed into 3D presentations that capture the imaginations of the rest of us. Users can experience the comprehensive globe with multi resolution imagery, thematic information, historical multi temporal imagery, and other points of interest. As a User we can explore and visualize the world in a 3D landscape along with all other wide ranging tools to explore Bhutan.

Bhuvan also provides a mobile version of its site and can be accessed from here.

As a feast for developers, Bhuvan also provides the API’s to embed a true 3D digital globe, into the web pages. Using the API you can draw markers and lines, drape images over the terrain, allowing you to build sophisticated 3D map applications.

Bhuvan Quick Tour:

If you are unable view the video, click Here to download.

Create Web Services using Axis Java2WSDL, WSDL2Java and Eclipse for all Servers manually – Part 2

With all the basic configurations done as specified in the last Article we continue to develop the Business logic.

  1. Create a class named Calculator.java, place four public methods add, subtract, multiply and delete and place the appropriate logics in it.
    package com.itechgenie.services.impl;
    public class Calculator {
    	public int add(int a, int b) {
    		return a+b  ;
    	}
    
    	public int subtract(int a, int b) {
    		return a-b ;
    	}
    
    	public int multiply(int a, int b) {
    		return a * b ;
    	}
    
    	public int divide(int a, int b) throws ArithmeticException {
    		return a /b ;
    	}
    }
  2. This is the class that has to be exposed as the Web Service and we write the funky TestRunner.java class to do all out operations like creating WSDL file, creating stub file etc.
  3. Generate WSDL file using Java2WSDL: Axis has a tool called Java2WSDL, which generates a WSDL file for a web service using a Java class. Java2WSDL file takes the following arguments.
    1. o – name for WSDL file -> calculator.wsdl
    2. n – target namespace -> mx:com.itechgenie.services.Calculator
    3. l – url of web service -> http://<host:port>/<Project-Name>/services/calculator

    Summing up the above arguments the following command line arguments is created.

    String java2wsdlArgs[] = {"-ocalculator.wsdl", "-nmx:com.itechgenie.services.Calculator", "-v", "-lhttp://localhost:8080/axis/services/calculator", "com.itechgenie.services.Calculator"} ;

    Read this Article on how to run the command line java tools from Eclipse.
    You can run the Java2WSDL as follows in the TestRunner class. Naah, don’t ask how, just put the following lines the main method and press CTRL + F11.

    try {
    	Java2WSDL.main(java2wsdlArgs) ;
    } catch (Exception e) {
    	e.printStackTrace() ;
    }

    The Java2WSDL class has the System.exit(0); method called from inside. So lines after the Java2WSDL will not be executed. To get the other arguments supported you can just run Java2WSDL.main(new String[0]) ;. This will display all the arguments supported by Java2WSDL Utility and this works for other utilities also.
    After running this Utility you will find the calculator.wsdl file created in the root folder of the Project.

  4. Generate Server side and Client side codes using WSDL2Java: WSDL2Java is another tools provided by the AXIS, which can generate server side and client side Java classes using a WSDL file. These classes are needed for deploying the web service and also for accessing the web service using a Java client. This tool expects the following argument which includes the WSDL file generated in the last step.
    1. o – output folder -> src
    2. p – package for generated classes -> mx:com.itechgenie.services. generated
    3. s – generate server side classes as well
    4. *.wsdl – WSDL file of any web service

    Summing up the above arguments the following command line arguments is created.

    String wsdl2javaArgs[] = {"-osrc", "-pcom.itechgenie.generated.service", "-s", "calculator.wsdl", "-v"} ;

    Read this Article on how to run the command line java tools from Eclipse.
    Now run the WSDL2Java utility as follows.

    try {
    	WSDL2Java.main(wsdl2javaArgs) ;
    } catch (Exception e) {
    	e.printStackTrace() ;
    }

    Once the above command is run, Just refresh the project in eclipse, you will find the following files created inside the “com.itechgenie.generated.service” package.

    1. Calculator.java
    2. CalculatorService.java
    3. CalculatorServiceLocator.java
    4. CalculatorSoapBindingImpl.java
    5. CalculatorSoapBindingStub.java
    6. deploy.wsdd
    7. undeploy.wsdd

    The above files can be used in both Server and Clients side as Skeleton (CalculatorSoapBindingImpl.java) and the Stub (CalculatorSoapBindingStub.java) respectively.

  5. Binding the business logic with the Skeleton: Take the Skeleton file and you will find the exact methods that were available in our Business logic class (Calculator.java.).
    Create a instance of the Business class and invoke the appropriate method from the skeleton as follows (Find the lines highlighted in yellow.).

    package com.itechgenie.generated.service;
    
    import com.itechgenie.services.Calculator;
    
    public class CalculatorSoapBindingImpl implements com.itechgenie.generated.service.Calculator{
    
    	Calculator calculatorImpl = new Calculator() ;
    
        public int add(int in0, int in1) throws java.rmi.RemoteException {
        	return calculatorImpl.add(in0, in1) ;
        }
    
        public int subtract(int in0, int in1) throws java.rmi.RemoteException {
        	return calculatorImpl.subtract(in0, in1) ;
        }
    
        public int divide(int in0, int in1) throws java.rmi.RemoteException {
        	return calculatorImpl.divide(in0, in1) ;
        }
    
        public int multiply(int in0, int in1) throws java.rmi.RemoteException {
        	return calculatorImpl.multiply(in0, in1) ;
        }
    
    }

    That’s it; we are now done with the development part of the Web Service. All we have to do is to configure to make the service up and running.

  6. Last configurations to make our service available: Open the server-config.wsdd file inside the WEB-INF folder. You will find the following lines.
      <!--  Your Service from the deploy.wsdd file - Starts here -->
    
      <!--  Your Service from the deploy.wsdd file - Ends here -->

    Keep the file aside and open the deploy.wsdd from the WSDL2Java generated files. Copy the <service> … </service> tag completely and paste in between the comments said above.

  7. Conclusion: You can follow the steps 6 to 11 and create as many services as you want and paste them in the server-config.wsdd.
    With this the configurations for the Web Service is over. Export the Project as a War and deploy it in Web Server and point to the URL http://<host:port>/<Project-Name>/services
  8. This URL should display all the services generated from steps 6 to 11 with the links the WSDL files for the above.

    Click here to download the sample project.